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PREFACE 

This Final Report describes research on automatic language classification by Texas 
Instruments Incorporated, Equipment Group, 13500 North Central Expressway, Dallas, Texas, 
under Contract No. F30602-74-C-0245 lor Rome Air Development Center, Griffiss Air Force 
Base, New York. Mr. Richard S. Vonusa (IRAP) was the RADC Project Engineer. The report 
covers work performed from May 1974 through May 1975. 
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SECTION I 

INTRODUCTION 

The problem studied is to design and simulate a system that will automatically determine 
to which of several specified languages a given segment of speech belongs, and to do this with 
small probability of error. This report contains the results of the second phase of study of such a 
system, in the first phase (Reference H classification was based on language likelihoods 
computed for certain reference sounds. Those sounds were short phoneme-like segments. In the 
second phase, classification is based on sequences of several such segments, which allows more 
accuracy and reliability in the automatic segmentation process. Another improvement is the use 
of '-time-frequency scanning" to accept or reject hypothesized occurrences of component sound 
segments. 

The algorithms discussed here automatically produce the information needed for language 
discrimination without reference to the particular languages being considered. This approach 
allows treatment of additional languages with little additional effort and with no need for special 
knowledge of those languages. 

Two separate data sets of equal size have been used in this study. The first is used to 
design the classifier, and the second is used for estimating the probability of error to be expected 
in using the classifier. The data sets used in this second phase of the study are the same as those 
used in the first phase. 

A decision rule based on occurrence frequency information about sequences of length 5 
and single segments allowed five-language classification accuracy of 70 percent. 

5/6 
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SECTION II 

DATA PREPROCESSING 

Analog speech data recordings lor this study were provided by »AOC. H» dtti «• from 
Analog spctu   ua w designation is adequate since the algorithms 

1," Sa e' Data Ironr 100 distinct speakers were processed; 50 speakers ^ dtU f^ 
estimatnm decision parameters and generating reference tiles ("training data ) and data Irom 
oth^speLt nesting data") were used to provide unbiased estimates of decision accuracy. 

The training data consisted of 90-second segments of speech ^om each of 10 speakers of 

determine performance. 

1.       ANALOG PREPROCESSING 

The analog speech data base was preprocessed using the hardware shown functionally in 
Figure       Füteen  bandpass  filters  were used to provide a time-frequency signal analysis. The 
en        recuenTes and bandwidths of these filters are shown in Table I. Following the low-Pas 
X in T i^al   in each channel are sampled, digitized to 11 bits, and stored   or addmona 
n oc"ss ng   One hundred samples per second are retained to represent the speech inlormat.on_ n 
^r^owing description, g 1 denote a column vector of data values stored a  --^peci, e 
time   Since  the operations  performed  at each sampling time  are  identical   reference to me 
^cific üme will be suppressed. The symbol g' Mgi g. • • • gJ will denote the transpose oi the 

column vector g. 

Z.        NORMALIZATION AND QUANTIZATION 

;     I 

I 

Some speaker normalization is accom- 
plished by regressing the data vector g upon 
regression vectors chosen to maximize 
between-speaker to within-speaker variance in 
the time-frequency spectrum (Reference 11. 
The expression for the normalized data vector 

is 

gN I/O f 

where 7 is the original data vector g with the 
components along the regression vectors sub- 
tracted out, and 

= f • f = I> 

TABLE I. FILTER 
BANK PARAMETERS 

Filter Frequency Bandwidth 

Number (Hz) (Hz) 

1 355 220 

2 530 220 

3 705 220 

4 880 220 

5 1055 220 

6 1230 220 

7 1405 220 

8 1580 220 

9 1755 220 

10 1930 220 

11 2105 220 

12 2280 220 

13 2455 220 

14 3500 1000 

15 6500 3000 
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The value of 0 is used as a measure of the overall energy level of the speech. Letting g, denote 
the \tli component Of the normalized data vector gN, and letting c, and Cj denote the regression 
coefficients tor the first and second order regression vectors, the j/// component fj ol the final 
data   vector I  is shown in Table II,  tor  '} ~ \, 2 12. Thus, f is a   12-element vector, nine 
elements of which are from normalized filter outputs, along with two regression coetTicients and 
the overall energy measure. Follov uig normalization, each element of the data vector f is 
quantized to 3 bits and stored on digital magnetic tape. Figure 2 shows data vectors from several 
comecutive time samples forming a quantized and digitized speech spectrum for the spoken word 
"warheads." The original spectrum, the reduced spectrum, and the auxiliary measures c,, Cj, and 
o are shown for this sample. 

In lollowing sections, computations will be made which use the data from certain specified 
time samples. These data will be considered as a matrix, each column of which is a 12-tuple of 
the form just defined. For example, the matrix of preprocessed data at times t 2, t - 1, t, 
t + 1, and t + 2 will be written 

P = [f(t - 2) f(t     1) fit) fit + 1) fit + 2)] 

TABLE II COMPONENTS OF REDUCED SPECTRUM DATA VECTOR 

Component Composition 

t. |i 

f3 '^(82   +g3) 

f3 W (g4   + gs) 

f4 H (g6   + g7) 

fs ^ (g8   + g9) 

f« '/^(glO   +gll) 

f, a du +gi3) 
f. gH 

f» 111 
f.o Ct 

fu c2 

f.2 a 

•■'■^"i"a" ■ •--  - ■■ - ■- ■ --     -       —— ...—J>-.^JJ...-J... mum ■           — —■    -      .- :       —-      <-.-■..      ■ .-     ■      -1. 
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SECTION III 

KEY SOUND DETECTION 

The genera! soluüon of the language elass.r.cation problem is to lirst Hnd those a^usUc 
elemen w^i have language characten/..ng capahüity (..e.. those elements winch occur w th 
^ ^ ime t ^ehhoilsln different languages,, and then, havmg observed »f «^ 
e ement estimate the likelihood, of the various hypothesized languages and choose hat language 
w HC ^ m 1 key Tins section deals w.th the first step of this solution, the isolat.on ol ey 
s s r s u ure of the sounds considered in tins study is a sequence ol phoneme-hke 
a o sU- II ments a determmed from the spectral representat.on of the speech data descnbed m 
r^r^om Each sequence of .ength k ^-rmn.d^ k^ints^ t.e =;on, 

language likelihoods. 

1.       INTERSEGMENT SIMILARITY 

Extensive use rs made of the squared error between two matrices (vectors) representing 
Lxiensivc use M comorise M data vectors, 1=1,2,..., 

sound segments. Suppose F= 1^0)1  and G-IftO)! "c^C"nipn,. „ p"   r.  >, defined t0 be 
12; j = 1, 2, . . . , M. Then the squared error between F and G, written e(F,G), is delmed to oe 

M 12 

e(F,G)=V V lfiO)-giÜ)l2 

j=i     i=i 

2.       TIME REGISTRATION • 

Points of time registration in the data are defined in terms of the overall energy measure, 
a and a"r nsitiomtiv ty function, T, a real-valued function of time which reflects the magnitude 
of dynamic speS cha'nge. Let R(t) denote the 12 X3 matnx consisting of data vectors from 

three consecutive sampling times centered at time t; i.e., 

R(t) = m -1) f<t) ^ + l>5 

Then, the transitionitivity at time t, T(t), is defined to be the squared error between R(t - 1) 

and R(t+ 1); 

r(t) = e[R(t  - 1), R(t+ Dl 

Figure 3 illustrates the format of the data vectors used to compute T. ^ T(0 is -all, then the 
two matrices are similar and t is a time of relatively steady-state speech. If T(t) is large, then t is 

a time of transition in the spectrum. 

Durine data processing the T function is computed at each sample time and is monitored 
to determn tpe'ak?and valleys. Each peak in the T function .s labeled as a time registration 
poin ""ided that (1) ^ value of the peak is greater than 50, and (2) the --1 est values ol 
th overall energy measure a in a 0.1-second neighborhood about that tune is greater thn 28a 
fond t on (1) is fmposed to overlook those small spectral changes which probably are not actual 

11 
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Figure 3. Data Vectors Used to Compute Transitionitivity 

phoneme boundaries, and condition (2) prevents consideration of silence segments. The threshold 
levels were determined as a result of inspection of speech spectra. 

At each registration time, a scanning pattern (SP) is extracted and stored lor use in 
representing candidate reference sequences. Let S(t) denote a typical SP extracted at time t. 
Then S(t) consists of three derived data vectors 

S(t)= [g, g2 fc] 

where 
g,   -  '/2[f(t   -  2) + f(t        1)] 

g2  ■ 1/2lf(t+ 1) + f(t+ 2)] 

The data vectors marked with asterisks in Figure 3 are used in determining an SP at time t. 

The first 90 seconds of speech data from each of the 50 training speakers was processed to 
extract and store scanning patterns at each time registration point. Table HI shows the numbers 
of SPs extracted. 

12 
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TABLE III. NUMBERS OF EXTRACTED SCANNING PATTERNS 

Language L, L2 L, L4 Ls 

Number of Scanning Patterns 5,3W 6,754 5,012 5.699 6,345 

3.        REFERENCE FILE GENERATION 

Any sequence of Mk ■ 2. 3, 4, and 5) consecutive scanning patterns separated by no more 
than Ü 15 second was considered to represent a potentially useful sound sequence. The total 
number of these candalate reference sequences (approximately 116.000. as seen trom Table III) 
was too large to process the desired amount of training and testing. Hence, the procedures in the 
following sections were adopted to choose a small subset of these candidate reterence sequences 
for use in the final language classifier. The object of the procedures is to tmd those sequences 
which occur often in the data and are distinct from each other. The procedures to be described 
were performed for each value It, k-2, 3, 4, and 5. Hence, specific reference to the particular 

sequence length will often be omitted. 

a. Scanning Error 

In ascertaining the occurrence of a sequence, use is made of the "scanning error," E. I 
real-valued function of a fixed scanning pattern, S, and of time, t. Let F(t) denote the derived 

data matrix lg, gj !>]■ where 

g, «HflO      2) + f(t      1)1 

fa = '/■ [f(t + 1) + f(t + 2)1 

gi   ■ |] g2 

f(t) ■ data vector at time t. 

Note that F has the same  format as the scanning pattern. Then the scanning error E(S,t) for 

scanning pattern S is defined to be 

E(S,t) = elS, F(t)] 

A relative minimum in the scanning error for S indicates a time at which the speech data is 

similar to the scanning pattern S. 

b.       Sequence Detection 

The recurrence of reference sequences is detected by first scanning the input data to 
hypothesize the occurrence of appropriate time registration points, and then hypothesizing 
sequence recurrence when the relationships among hypothesized time registration points corre- 
spond to those in the reference sequence. Rejection of sequence recurrence is based on spectral 
similarity between reference sequence scanning patterns and the input data. 

To be more specific, consider the detection of reference sequences of length 2. Let (S,, 
S.) denote a reference pair, where S, is the scanning pattern extracted from the training data at 
time T    i= I, 2. Let At denote |Tj     T, I, the time separation between scanning patterns, and 

13 
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assiiinc thai Tj <Ta. During proa-ssmj: of the input data, the scanning errors l.(Si, t) i = 1, 2 are 
computed and monitored to label the valleys in each of these scanning error function». These 
valley points are hypothesized to be time registration points lor the corresponding scanning 
pattern. Whenever a valley in hlS,, t» precedes a valley in E(Sj, t) by less than 0.25 second, the 
recurrence of the reference pair (S, , S, ) is hypothesized. 

The basis lor acceptance or rejection of this hypothesis is the pair error, denoted H2. Let 
li denote the time of occurrence of a valley in LtSj, t), 1=1,2. and let At = |t2 t,!. Let 
e, ■ LtSj. tj) denote the value of the scanning error at the valley time tj, i = 1,2. Assume that 
It, t2| < 0.25 second, so that the recurrence of (S,, S2) is hypothesized. This hypothesis is 
rejected If and only it" L2 > LMAX2, where EMAX2 is a fixed threshold and E2 is defined to be 

L, ■ 
(e, +40)(e2 +40) 

" 2048 
1 + 

4|At -At| 

max(5. At) 

H 

It can be seen that, for detecting the occurrence of a reference pair (S,, S2), the time separation 
of registration times in the data must be close to that of the scanning patterns, and also the 
scanning patterns must each be similar to corresponding transitions found in the data. 

For detection of sequences of length k, k = 3, 4, and 5, the scanning error valleys for each 
of the k scanning patterns are recorded, and an occurrence hypothesized whenever (l)k scanning 
error valleys, one from each scanning pattern, occur in the same order as did the scanning 
patterns; and (2) no time interval between adjacent valleys is greater than 0.25 second. The pair 
errors between each of the k - 1 pairs of valleys are summed to form a k-sequence error, Ek. 
The hypothesized occurrence of the sequence is rejected if and only if Ey. > EMAXk, where 
EMAXk is a specified threshold for sequences of length k. 

c.        Preliminary Sequence Selection 

Because the average processing time needed to detect occurrences of a single reference 
sequence in all the training and testing data is approximately 20 minutes, most of the 
approximately 116,000 candidate reference sequences must be eliminated from consideration. As 
a first step toward this goal, a study was made to determine what constitutes similarity among 
candidate reference sequences. Let P, ■ (Su , S12 ) and P2 = (S2I , S22 ) denote candidate 
reference sequences, where Sy is a scanning pattern which occurred at time tjj.i, j = 1,2. Let e, 
and e2 denote the squared error eCS,, , S2i ) and e(S12 , S22 ), respectively, and define At ■ lt12 

- tu I, and At = |t22   - t21|. Then define the similarity between P, and P2 to be 

Es (P,,P2 ) 
(e1 +40)(e2 +40) 

2048 
1 + 

4|At-At| 

max(5. At) 

Note the intentional analogy to the pair error E2. 

Let T, ■ JS;: 1 = 1,2..., IOO} denote a set containing the first 100 candidate 
reference sequences of length k hypothesized from the first training speaker of language L2. A 
cumulative frequency distribution was plotted for the values of the similarities E^Sj. Sj), 1 
j < 100. A similarity level ß was determined such that P E^Pp Pj) < 0 " '; 

determined for each k are shown in Table IV„ 
0.75. The values of ß 
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TABLE IV SIMILARITY THRESHOLD 

Sequence Length 

Threshold 44 

3 

92 

4 

132 

5 
176 

Then, all th« candidate reference sequences from each language were ordered according to 
the lollowing procedure. Let the language ami the sequence length he fixed. A subset T2 
consisting of 1Ü percent of the candidate reference sequences from each of the 1Ü training 
speakers was formed. For every candidate reference sequence S from the language considered, 
the similarities HS(S, R), ReT3l were computed, and the number N(R) of similarity values less 
than ß (for sequence R) were noted. All candidate reference sequences were then ordered 
according to N, with the first sequence being the one with the highest value of N. This 
procedure places that sequence occurring more frequently higher in the ordering. 

A reduced file of candidate reference sequences is formed for each language and each 
sequence length by first placing in the file that sequence which is first in the above ordering, and 
then adding succeeding sequences in the ordering, provided that the minimum of the similarities 
between the sequence to be added and each sequence already in the reduced file is greater than a 
fixed threshold. This ensures that each sequence in the reduced file is distinct from all others in 
the file. 

The procedure for determining the add threshold is as follows. A small file of candidate 
reference sequences from 34 consecutive scanning patterns from one training speaker was 
formed. Occurrences of these sequences were detected in 10 seconds of data from each of the 
nine other training speakers of the language. The sequence rejection threshold EMAXk was set 
large enough so that all hypothesized sequences and their corresponding Ek values are recorded. 
The cumulative frequency distribution of the values of Ek was plotted and the add threshold oc 
was chosen such that P |Ek < a[ = 0.98. Table V shows the add thresholds for each language 
and each sequence length. 

The total numbers of hypothesized sequences from the experiment described in the 
preceding paragraph are shown in Table VI for each language and each sequence length. These 
numbers were used to determine the proportions of the desired numbers of reference sequences 
of the various lengths. These proportions are the inverses of the ratios existing among the total 
number of hypothesized sequences. That is, if there were twice as many pairs hypothesized as 
there were triples, it is desired to have half as many reference pairs as reference triples in the 
reduced file. The total numbers of reference sequences added to the reduced file was restricted 
by available processing time and computer core storage limitations. The numbers of reference 
sequences retained in the reduced files are 
shown in Table VI for each language and each 
sequence length. The total numbers of reference 
sequences of each length are shown in Table VII. 
A total of 452 reference sequences remained in 
the reduced file, denoted F. 

d.       Data   Processing   for   Occurrence   Infor- 
mation 

Both the training data and the testing data 
(90   seconds   of   speech   from   each   of   100 

TABLE V. ADD THRESHOLDS 

Sequence Length 

igiiage 2 3 4 S 

L, 94 152 204 256 

L2 96 156 210 264 

U 104 168 228 296 

L4 84 140 186 224 

Ls 92 148 214 248 

15 

■.- .. ■-:-,. -■:.-..:.;..;,■.. .:.;....■.,:.;:. ■,,..., ^^.■„; ^J^^^^i!^^^^^^^^^,^^.^^ , -..Mu^^i^.L^.^M..;-^-.'.!..::..^ ■■ :.;-,■,u^.....i,,,  



TABLE VI. FILE REDUCTION PARAMETERS 

Number of Number <»* 
Language 

Index 
Se(|iieiK-e 

Length 
Hypothesi/ed 

Sequences 
Sequences 
Retained 

1 2 10,817 10 

1 3 5,3H4 21 

1 4 2,810 42 

1 5 1,447 1') 

2 2 14346 10 

2 3 7.025 21 

2 4 4,()2(. 40 

2 5 2,164 18 

3 2 13,574 7 

3 3 5,678 15 

3 4 1,646 45 

3 5 532 21 

4 2 18,880 14 

4 3 11,833 23 

4 4 7,260 37 

4 5 4,027 19 

5 2 12,243 9 

5 3 5,715 20 

5 4 2,670 41 

5 5 1,249 19 

TABLE VII. NUMBER OF REFERENCE 
SEQUENCES IN REDUCED FILES 

Sequence Length 3 3       4     5 Tola 

Number of Sequences 51 100   205   96 452 

i It 

speakers) were processed to detect the occurrences of each sequence in the reference file F. The 
values of EMAXk (the rejection level for hypothesized sequences) was set large enough that all 
hypothesized sequences were accepted. For each accepted sequence, record was made of (1) the 
index S of the speaker whose data was being processed (and, hence, of his language L), (2) the 
index R of the accepted reference sequence (and, hence, its length k), and (3) the value Ek of 
the overall sequence error. This processing required approximately 150 hours of computer time, 
using a Tl 980A minicomputer. 

To determine the effects of varying the rejection level for detecting sequence recurrence, 
six sets of thresholds EMAXk were used in turn to determine an array N(R. S, L). where an 
entry in this array is the number of occurrences of reference sequence R during processing of 
data from speaker S of language L. (As previously described, an occurrence is counted whenever 
ET <EMAXk.) One set of thresholds (Case 0) is the one mentioned in the previous paragraph, 

16 

*«_ i 



^^mm^^mm^mami^^^mt mi. 

which yields all hypolhesiml MqueilON. Th« other sets contain successively lower thresholds, 
thereby  requiring successively better match between relerence and data to yield an occurrence. 
Case i,  i" 1,2 5. are obtained as lollows, 1 irst, an empirical probability density plot was 
obtained lor values of E-f from training data lor ( ase 0. I igures 4, 5, 6, and 7 show this density 
lor sequence length 2. 3, 4. and 5. respectively. Let N-, denote the total number of sequences 
hypothesized (lor some sequence length). Irom tlie corresponding distribution, threshold values 
were determined which would yield N,/2' detected sequences, lor Case I, i« 1, 2, 3, 4. 5. This 
procedure was followed for each value ol sequence length. The resulting thresholds are shown in 
Table VIII. Analysis of the results of using the six cases are presented in Section V. 

TABLE VIII SEQUENCE ACCEPTANCE THRESHOLDS 

Case 

Length 0 1 2 3 4 5 

2 •999 29 18 13 9 7 

3 999 61 41 31 24 19 

4 gw 96 69 53 42 34 

5 999 119 87 69 56 46 

»nuesliold ol 999 allows accepUma; ol every hypolhesiml sequence. 

I 
e.        Final Reference File Formation 

The final reference file, F*, of sequences to be used in computing decision functions is 
formed by deleting from F those reference sequences which had too little language specificity. 
Such sequences were determined by considering the average information remaining (uncertainty, 
entropy) after detection of a reference sequence in the training data. The lower this uncertainty, 
the better is the language discrimination capability of that sequence. Specifically, the entropy 
H(R) associated with the detection of sequence R is 

5 

H(R) =    "V^ plLiiR) log [pCLilR)] 

i=l 

where pCLjlR) is the language likelihood, given that R has occurred. Let the symbol .Sj denote 
the collection of training speakers of language Lj, i = 1, 2, ... 5, and let M(R, L) denote the 
number of detections of reference sequence R during speech from all training speakers of 
language L. Then 

M(R, Lj) E 
SES: 

N{R, S, Lj), i= 1. 

17 
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Rw likelihood pCLlR) is computed as 

RLIR)* 
q(R, l.,l 

5 

^cKR.l, 

i= 1 

where 

qlR. L,) 
M(R, Lj) 

/j M(R, L) 
Re I 

The final lile F* is then 

F* -   JRtF : HfRXHj 

where   H0   is  a  fixed  entropy   threshold.   Base   2  logarithms  were  used   in computations; the 

maximum entropy possible is logj 5 = -.322. 
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SECTION IV 

DECISION RULES 

Uns section describes the decision rules used to classily data from test speakers. The 
general approach is to process a specified amount (40 seconds) of speech data to be classitied 
(for  example,   from   speaker  S),  detecting  the occurrences of the  references in  F*.  Let   R 
| Ki    K,  \im\   denote the sequence of detected reference sequences ol a specilied length. K 
is taken to be"'the representation of the speech data from speaker S. Then the language 
likelihoods described above and the occurrence statistics of the sequence R are used to compute 
decision parameters which are used to classify the data as being from one of the live languages 
considered. Implementation of the decision strategies was carried out separately for each value ol 
sequence length k, k = 2,3.4, and 5. 

Let p.(R) denote the probability density function for the sequence R, given that language 
L was spoken i » 1,2,3,4,5. Letting P(L) denote the a priori probability for language L, the 
decision rule which is optimum in that it incurs the lowest possible probability of m.sclassification 
can be stated as; observe the sequence R and choose the language Lj for which 

PiLj) Pjd) > KL,) Pid) for i " 1^3,4,5 

In practice, neither the a priori language probabilities nor the conditional sequence densities are 
explicitly known. Hence, approximations to the optimum rule must be used, and less than 
optimum results must be tolerated. 

The basic strategy is to assume independence of the detected sequences of length k and 
then choose the language which maximizes the resultant expression for the log likelihood of the 
hypothesized languages given the observation of the data representation R. Let DFj(S,L) denote 
the unnormalized decision function value computed for test speaker S and hypothesized language 

Le   iL], L}, L3, L4 M Then 

DF^S, L)    - E 
RcR 

logp(L|R) 

where the summation is taken over reference sequences in the data representation R for speaker 
S. The following normalization is made. Define 

DF2(S, L)- 
DF.fS, L) 

E DF.CS, L) 

where the summation is over all 50 test speakers. Then let DF(S, L) denote the normalized 
decision function used to classify the test speakers, and define 

DF(S, L) 
DF2(S L) 

i=l 

DF2(S, U)\ 

I. 
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Docisiun rule A is to choose, for speaker S, the language Lt   | L,, L2, L3, L4, L5|   lor which 
DF(S,L) is smallest. 

A second strategy is based on maximizing the correlation between the decision function 
values delined above for the test speaker and normalized decision function values. Let Lj and L 
denote actual language and hypothesized language, respectively, i. j ■ 1,2,3,4,5. Let 

0,0., L.) E 
SeS: 

1)F-(S, Lj) 

and then define 

ÜIL,,^)    = 
D^Lj.Li) 

2^   {'^.«Li-Lj )}: 
j=l 

Decision rule B states: Compute the correlation 

3 

p*(S, Lj)    - V^  CKLj, Lj) DF(S, Lj) 

.i=i 

and choose, for speaker S, that language Le   | L,, L2,  L3, L4, L5}   such that p(S,L) = 1 
p*(S,L) is smallest. 

Each of these decision rules was implemented for each of four sequence lengths k = 2,3,4, 
and 5. Additional decision rules were used which were based on results for the four sequence 
lengths combined. To exhibit the dependence of the decision parameters on sequence length, k, 
define 

DF' (S,L,k) = DF(S,L) 

for sequence length k = 2,3,4, and 5. Then define 

5 

DFC(S, L) - 2^ DF' (S, L, k) 
k=2 

Decision rules A* and B* result from using DFC instead of DF2 and then making the succeeding 
computations in the same manner as for rules A and B, respectively. 
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SECTION V 

CLASSIFICATION RESLTLTS 

This section describes the classification results obtained using the various decision rules 
described in Section IV. Many classification experiments were performed to determine the exact 
structure of a classifier which performs well with the training data. The idea is to design the 
classifier using the training data and then classify the test speakers to estimate the probability ol 
correct rNssification associated with that classifier. Variables that required speedication were; 
(1) acceptance level for hypothesized sequences; (2) entropy threshold for selection oi reference 
sequences with sufficient language specificity; (3) decision strategy; and (4) sequence length. 

1.       TRAINING DATA 

Figures 8 through 12 show the numbers of errors from classification of the 50 training 
speakers as functions of the variables mentioned above. Figures 8 and 9 show (for decision rules 
A A* and B, B*, respectively) the errors as a function of the acceptance level for acceptance of 
the hypothesis that a reference sequence has recurred, The cases for the various levels were 
described in Subsection lll.3.d and were labeled 0, 1, 2, 3, 4, 5, as in the figures. These cases 
correspond to 100-, 50-, 25-, 12.5-, 6.25-, and 3.125-percent acceptance oi all hypothesized 
sequences. These figures include results for each sequence length k - 2,3,4,5, and for each result 
plotted, the entropy threshold used was H0 ■ 2.3. 

Figure 10 shows the errors incurred as a function of the entropy threshold for selection of 
reference sequences. This parameter determines the total numbers of references of each length 
remaining in the file used to compute decision function values. In each case shown, data trqm 
the 12.5-percent acceptance case was used. 

Figure 11 shows the errors as a function of sequence length for the case: (1)H0 - 2.3, 
(2) 12 5-percent acceptance, and (3) decision rules A and B. This case was chosen because results 
for it were at least as good as for the other situations. For rule A of this same case, Figure 12 
shows error as a function of the number of reference sequences remaining in the final reference 

file. 

It is seen that, for the training speakers, Case 3 data (12.5-percent acceptance), an entropy 
threshold of H0 = 2.3, and decision rule A using sequences of length 4 yielded the best 
classification performance: 88-percent correct five-language classification. 

2.       TESTING DATA 

Figures 13 and 14 show the numbers of errors resulting from classifying the 50 test 
speakers for various decision rules and values of the parameters. The parameters determined from 
the training data experiments provided the basis for choosing parameters lor classification 
experiments with the testing data. Figure 13 shows performance as a function of acceptance level 
and Figure 14 shows performance as a function of entropy threshold. It is seen that Case 3 data 
and an entropy threshold of H0 ■ 2.3 yield the fewest errors provided that decision rule B was 
used with sequences of length 5. This choice yielded 62-percent correct five-language classifi- 

cation. 
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3.       COMBtNATION DECISION STRATEGY 

A decision rule was lormulated whicii used sequences of length k = 5 as well as single 
segments, as developed in tlie first phase of this Study. During the first phase, values of a 
decision function D'lS.L) were determined (Table XI, reference 1) which were computed from 
the same test data. A decision function which combined the results of the two phases of this 
study was computed (for i= 1,2,3,4,5) to be: 

IX S, L 
P(S, L,) 

+ 
D'tS, Li) 

Z^ Pts,, L,) IIP (S,, Li) 
Sj.S, SjeSj 

I 

I 

where ptS.Lj) was computed for sequence length k = 5. Choosing the language which yielded the 
smallest value for Dc (S.L) to classify the test speaker S yielded the confusion matrix shown in 
Figure 15. The overall classification accuracy resulting from this combination rule is 70 percent. 
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Figure 8. Classificution Errors as a Function of Acceptance Level (Rules A, A*; Training Data) 
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Figure 11. Classification Errors as a Function of Sequence Length (Training Data) 
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SECTION VI 

CONCLUSIONS AND RECOMMENDATIONS 

In this study language dassilication was based Ofl sequeuees oi 1, 2. 3, 4, and 5 
nhoneme-like sound segments. The approach taken treated each language .dentieally. w.thout 
special Imguistie eonsideratio.^. Time-frequeney scanning was used to hypothes.ze time reg.stra- 
tion points and generate candidate reference sequences. Relationships among occurrence times, 
speech energy, and scanning errors were used to hypothesize the recurrence o reference 
sequences in input speech data. Classilication was based on summed logarithms ol the language 
likelihood estimates, given the occurrences of the reference sequences. 

Sequences of length 4 performed best in classifying training speakers. For this best case, an 
entropy threshold of 2.3 provided the best rejection of sequences not having sull.c.ent language 
specilicity. and the acceptance threshold was set such that 12.5-percent ol all hypothestzed 
sequences were considered, in classifying the 5Ü training speakers, 88-percent correct l.ve- 

language classification resulted. 

A decision rule using sequences of length 5 in combination with sequences of length I 
(single segments) yielded best performance in classifying the test speakers, yielding 70-percen 
correct   live-language   classification.   Again,   the   2.3   entropy   rejection level and   12.5-percen 
acceptance level for hypothesized sequences (as predicted from training data results) proved most 
useful when the independent test data was classified. 

Speaker dependence provcu to be a formidable obstacle in attaining good classification 
results. The same nine test speakers (18 percent of the test data base) were misclassihed by both 
the decision rule B using sequences of length 5 and the decision rule using D (S.L) tor single 
segments. To reduce such speaker dependency, the following improvements are planned: 

A voiced-data indicator and a pitch measure should be included in the spectral data 
representation. 

Labeling of sequences as to basic sound type (e.g., stop, fricative, vowel, consonant) 
should    provide    better   sequence    classification   as   well   as   less   speaker 

dependency. 
To  allow  averaging the effects of individual speakers,, separate representation of 

overall sequence data should be defined and used. 

There should also be significant improvement in data processing throughput to allow more 
detailed understanding, analysis, and refinement of reference sequence flies. 

39/40 

^Miiit''iinrmilriflilii   "-—I ■   im  rn ■-■ - -   --   ■— ' —  ■ .^fMj^al—M^—. -   ...■.,...-.., .     ...          .. ^ — -      -^ 



REFERENCE 

1. R. dary Leonard, and deorge R. Doddington. "Automatic Language ktelttiScfttloa," Final 
Report. RAIX-TR-74-200, August 1^74 ,   (AD785397). 

41/42 

::.:r 1   niiriiia  niil^MiniaHlii'ilir Vf^M 




